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Summary

Problems involving stochastic processes frequently involve the computation of hitting
probabilities, and one often has to approximate the given process by a Brownian mo-
tion. But, in order to obtain explicit answers, it is sometimes necessary to map the
Brownian motion and the region in which it is defined, in such a way that the trans-
formed process is again a Brownian motion. The desired exit probabilities can then be
found by symmetry arguments. For planar Brownian motion, the Schwarz-Christoffel
transformation is such a mapping. The goal of this paper is to provide an organized
summary of the relevant theory and a step-by-step guide to finding the explicit form
of the transformation. We are mainly concerned with exit probability problems. We
also draw attention to software developped by Driscoll and Trefethen which we found
very helpful. Among the new problems we solve is the three players’ ruin problem with
capital constraints.
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1 Introduction

Exit probabilities or expected hitting times for stochastic processes are recurrent themes
in probability, but their explicit computation can be complicated. Approximating a given
stochastic process by a simpler one is therefore a natural approach, and Brownian motions
play an important role in such a replacement. However, for processes of two or higher
dimensions, the mathematical justification for replacement by a Brownian motion of the
same dimension is usually not sufficient to find the explicit solutions of hitting time problems.
So, for instance, for a planar Brownian motion, the probability of hitting a certain region R
in a subregion S of the plane, conditioned on being in S does not depend only on the shape
of R but also on that of S. The same is true in higher dimensions.

To start with a specific example, suppose we have a Brownian motion (Wt)t≥o without
drift, starting at the origin (W0 = (0, 0)). Let Dr be the disc centered in (0, 0) with radius
r, and let L be a fixed arc segment of length l on the circumference of the circle. The
probability that the first exit of (Wt) will occur through L is just the angular measure of L
with respect to the origin , that is l/(2πr) = φ/(2π).
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Clearly, in this specific case, the symmetry argument is not only sufficient for the answer
to be intuitively clear, but also to prove its correctness. Moving the starting point W0 away
from the origin changes the situation completely. If the angular measure intervenes at all in
the answer, it is clearly not independent of r. More generally the angular measure of L is
bound to play a subordinate role in the answer, depending on the shape of the region S.

A powerful tool is Lévy’s theorem (see Lévy(1965), Theorem 56.1 page 254).

Lévy’s Theorem: The intrinsic properties of a Brownian motion remain invari-
ant under conformal transformations.

Other versions of this theorem, and its applications can be found in Bass(1995) or Dur-
rett(1984).
As a corollary one has the following (Theorem 56.2 p 255 of Lévy(1965)):

If a Brownian motion initially occupies a position A interior to a contour Γ, the
probability that it reaches Γ for the first time through an arc Γ′ is proportionnal
to the harmonic measure of Γ′ seen from A.

Lévy explains how one can construct the harmonic measure of an arc, but we shall not
require this here. What is of interest to us in this theorem is the following rule. To compute
the exit probability of a Brownian motion through an arc Γ′ of a given domain Γ starting at
a point A in this domain, it suffices to construct a conformal transformation from Γ to the
unit disk which maps A into its center, and compute the image of Γ′ through the conformal
transformation. Then, by the same symmetry argument as above, the desired probability
will simply be the length of the image arc divided by 2π.

Let us now recall some elements of the theory of complex functions. This material has
been widely covered in many good books (see for example Churchill et al.(1974), Hilde-
brand(1963) or Rudin(1966)). For the whole of this paper we shall be working with the
extended complex plane, i.e. the complex plane in which we include the point at infinity
(denoted by ∞). All other points z ∈ C are finite.

First of all, a function will be said to be analytic in a region R of the complex plane if
it has a finite derivative at each point in R, and is single-valued in R. Cauchy’s theorem
(see e.g. Rudin(1966) page 207) states that the line integral of an analytic function over any
closed piecewise differentiable curve vanishes. This means that the integral of an analytic
function from a point a ∈ C to a point b ∈ C is independent of the path chosen. We also
recall that a mapping f : C → C is said to be conformal if it preserves the angle between
two intersecting differentiable arcs. One can see that any mapping which is analytic over
a domain, and has derivative f ′(z0) 6= 0 at every point z0 in the domain is a conformal
transformation of that domain.

An important example of conformal transformations is that of the linear fractional trans-
formation, also known as the Moebius transformation. This is of the form

w =
az + b

cz + d
(ad− bc 6= 0).
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Such a transformation is one to one from the extended plane to itself, and is uniquely
determined up to the choice of three distinct points and their three distinct images (see
Bieberbach(1953) pages 24, 25, 26). A special subfamily is that of the linear fractional
transformation which maps the upper half plane Imz ≥ 0 onto the unit disk |w| ≤ 0. It is of
the form

w = eiα
z − z0

z − z̄0

, (1)

where the point z0 ∈ Imz > 0 is sent into the center of the disk.
One of the fundamental building blocks of this theory is the following theorem, of which

there are many versions (see for example Rudin(1966) page 273 or Bieberbach(1953) page
128).

Riemann’s Theorem: There exists a conformal one to one transformation
from any simple and simply connected region Ω in the plane (other than the
plane itself) to the unit disk. It is uniquely determined up to the choice of three
points in Ω and their images.

Since the inverse of a one-to-one conformal transformation is another conformal transfor-
mation, the theorem also implies that any two simply connected regions of the plane are
conformally equivalent, i.e. can be mapped onto one another by a one to one conformal
transformation.

Conformal transformations have a large number of applications in physics, fluid dynamics,
partial differential equations, electrostatics, etc., since many properties remain invariant after
such transformations. One can therefore transpose a problem in a difficult domain into a
similar problem in an easier or more appropriate domain.

However Riemann’s theorem is of no help when one wishes to construct a conformal
transformation explicitely mapping a given domain into another. In the next section we
shall outline a systematic method for the construction of a transformation mapping a general
polygon into a circle. This turns out to take a nice form, known as the Schwarz-Christoffel
transformation.

2 The Schwarz-Christoffel transformation

This is a family of conformal transformations of a given form (see equation (??) below) which
map a canonical domain (unit disk, upper half plane...) conformally onto the interior of a
polygon. Figures ?? and ?? illustrate the Schwarz-Christoffel transformation of the upper
half plane and the unit disk (respectively) into a triangle. These mappings were named after
Hermann A. Schwarz (1843-1921) and Elwin B. Christoffel (1829-1900), who discovered them
independently.
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(PUT FIGURE ?? around here)

2.1 Construction

Consider a smooth directed arc C = z(t) in the complex z-plane. Let v denote the unit
vector tangent to C at a point z0 := z(t0). Let τ denote the unit vector tangent to the image
Γ of C in the complex w-plane under a transformation w = f(z) at the corresponding point
w0 := f(z0). Suppose that the transformation f is analytic at z0 and f ′(zo) 6= 0 (see figure
??).

(PUT FIGURE ?? around here)

Then, since log(w′(t)) = log(f ′(z(t))) + log(z′(t)), we have: arg[τ ] = arg[f ′(z0)] + arg[v].
In particular if C is a positively directed segment of the x-axis, we have v = 1 and arg[v] = 0
at every z0 = x on C, i.e.

arg[τ ] = arg[f ′(z0)]. (2)

If f(z) has constant argument along that segment, it therefore follows that arg[τ ] is constant
and that the image Γ of C is also a segment of a straight line.

We now exhibit a general formula for a conformal mapping from the upper half plane
onto any given closed convex polygon P , adding the further restriction that it maps the
x-axis onto the border of the polygon defined by the vertices w1, w2, . . . , wn (counted in a
counter clockwise direction).

Let −∞ < x1 < x2 < . . . < xn−1 < ∞ denote the n − 1 real points which are to be
mapped (in that order) onto the first n − 1-vertices of P , and take wn as the image of the
point at infinity (wn := f(xn)) with xn chosen as the point at infinity. The xi’s will be called
the prevertices of the polygon (see figure ??).
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(PUT FIGURE ?? around here)

From the first argument it is clear that what we need is a transformation w = f(z)
whose derivative has constant argument along each of the segments ]xk, xk+1[, and such
that arg[f ′(z)] changes value abruptly at each point z = xk. Therefore, let us consider the
properties of functions whose derivatives are given by

f ′(z) = A(z − x1)
−k1(z − x2)

−k2 . . . (z − xn−1)
−kn−1 (3)

with A ∈ C and the ki’s ∈ R. Such a function obviously satisfies:

arg[f ′(z)] = arg[A]− k1 arg[z − x1]− . . .− kn−1 arg[z − xn−1] (4)

Let us take a point moving along the real axis z = x ∈ R in a positive direction, starting
at −∞ up to x1. Since z < xi for all i = 1 . . . n − 1, all the summands in equation (??)
(except arg[A]) are constant and equal to π. But as the point passes x1, the term arg[z−x1]
reduces to zero, since z − x1 > 0 ∈ R. The other terms remain constant and equal to π.
From equation (??) this implies that arg[f ′(z)] increases abruptly at the prevertex x1 by the
angle k1π but remains constant from there up to x2 (see figure ??). As the moving point
passes x2 the argument of the derivative of our function increases again by the angle k2π.

−∞→ x1 arg[f ′(z)] = arg[A]− (k1 + k2 + k3 + . . .+ kn−1)π,
x1 → x2 arg[f ′(z)] = arg[A]− (0 + k2 + k3 + . . .+ kn−1)π,
x2 → x3 arg[f ′(z)] = arg[A]− (0 + 0 + k3 + . . .+ kn−1)π.

We can repeat this argument at each prevertex xi. From equation (??) it follows that
the image of each segment ]xi, xi+1[ is a line segment ]wi, wi+1[ in the w-plane, and that the
exterior angle at each change of direction zi is given by kiπ. We note that from xn−1 to xn
all but one the summands in equation (??) vanish, which implies that arg[f ′(z)] = arg[A]
along that segment. Setting knπ = 2π − (k1 + . . .+ kn−1)π yields the fact that from −∞ to
x1, arg[f ′(z)] = arg[A]+knπ. Therefore it suffices to set ki > 0 ∀i = . . . n to ensure that the
image, through a function f whose derivative is given by equation (??), of a point moving
in positive direction along the x-axis in the w-plane is a positively oriented closed convex
polygon with vertices w1, . . . , wn and exterior angles k1π, . . . , knπ.

(PUT FIGURE ?? around here)
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It should be noted that if k1 + . . . + kn−1 = 2, then there is no vertex wn since there is
no change of direction at that point, and the image polygon has therefore n− 1 sides. This
implies that we can lift the restriction that one of the prevertices is the point at infinity, if
we wish to do so. However, for practical reasons, this is rarely done.

All this is of course not conclusive, since one still has to prove that such a mapping exists,
is conformal and one to one. It has this property everywhere on the upper half plane except
at the xi’s where it is no longer conformal. This can be shown in various ways, and the two
most common proofs are given in the books by Nehari(1952) and Churchill et al.(1974). We
refer the interested reader to these. Taking these results for granted, we may continue.

(PUT FIGURE ?? around here)

There is a one to one correspondence between points on the x-axis and points on P . If z
is some point interior to the upper half plane, and x0 some point on the real axis (different
from the xi’s), the since f is conformal throughout the upper half plane, the angle formed
by the vector joining x0 and z must be preserved. Thus, the image of interior points of the
upper half plane lies to the left of the polygon taken counterclockwise (see figure ??).

To make things more precise, we state:

The Schwarz-Christoffel Formula: Given a closed convex polygon P with
vertices w1, . . . , wn and exterior angles k1π, . . . , knπ (taken in counterclockwise
order), there exist n−1 real constants x1 < . . . < xn−1 and two complex constants
A,B such that the mapping

f(z) = A

∫ z

z0

(s− x1)
−k1 . . . (s− xn−1)

−kn−1ds+B (5)

is a conformal transformation of the upper half plane into the interior of P ,
which maps the real axis onto P , each xi to the corresponding wi and the point
at infinity to wn. This mapping is continuous throughout the upper half plane
y ≥ 0 and conformal except at the prevertices.

Lifting the restriction xn = ∞ clearly adds one term to the integrand of (??), of the form
(s − xn)

−kn . It is also clear that we do not have to restrict the domain to the upper half
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plane. For example, we can combine the inverse of a Moebius transformation in equation
(??) with a Schwarz-Christoffel transformation to obtain a conformal transformation from
the unit disk to a polygon (see Nehari(1952) p 193, Hildebrand(1963) p 577, or section ??).

2.2 Choice of constants

Let P be a polygon with vertices w1, . . . , wn and corresponding exterior angles k1, . . . , kn (we
know the ki’s in equation (??) are predetermined). In order for f to map the entire x-axis
onto P , we must have the following n equalities

f(x1) = w1, . . . , f(xn) = wn

However these can be simplified: writing f = AF + B, one sees that the complex constant
A = |A|ei arg[A] comprises an arbitrary magnification factor |A| and a rotation by the angle
arg[A]. In the same way, the constant B = b0 + ib1 represents an arbitrary translation
without distortion through the vector b0 + ib1. Therefore, using

F (z) =

∫ z

z0

(s− x1)
−k1 . . . (s− xn−1)

−kn−1ds, (6)

if we determine the xi’s in such a way that F maps the x-axis onto a polygon P ′ similar to
P , we can then choose a magnification, rotation and translation through A and B to map
P ′ onto P . Thus these two constants are also predetermined by the position and orientation
of the polygon P , and we are left to choose the xi’s to ensure that the image through F of
the x-axis is a polygon similar to P .

Knowing that there are an infinite number of ways to map the upper half plane onto itself,
we anticipate some freedom in their choice. This is indeed the case. The image polygon P ′

through equation (??) has the same exterior angles as P . Therefore, it suffices to make sure
that the n − 2 connected sides of P ′ have a common ratio to the corresponding sides of
P . This yields n − 3 equations in the n − 1 unknowns xi. Therefore, two of these, or two
relations between them can be chosen arbitrarily (provided of course that the correponding
system has n− 3 real solutions). This means we have two degrees of liberty. This is exactly
what had been predicted by Riemann’s theorem. It should be noted that when the condition
xn = ∞ is removed, we have in fact three degrees of freedom.

The remaining n − 3 prevertices are then uniquely determined and can be obtained by
solving a system of nonlinear equations. This is non trivial and is known as the Schwarz-
Christoffel parameter problem. See for example Howell (1990) for an overview of the problem
and its inherent difficulty.
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3 Applications of the Schwarz-Christoffel transforma-

tion.

3.1 Exit probability for an infinite strip

Let us take a planar Brownian motion starting at some point within an infinite strip which
we suppose (without loss of generality) to be of width π. We are looking for an explicit
link between the distance from the initial point w0 = x0 + iy0 to the borders and the exit
probability of the Brownian motion through one of the borders. This example could of
course be solved without the use of the Schwarz-Christoffel transformation , but serves here
to illustrate the method.

By viewing the strip as the limiting form of a rhombus with vertices w1 = iπ, w2, w3 =
0, w4 and corresponding exterior angles k1π = 0 = k3π, k2π = π = k4π, we can use the
Schwarz-Christoffel transformation to determine a conformal transformation from the upper
half plane to the infinite strip. Choose the prevertices x2 = 0, x3 = 1, x4 = ∞. (Since we
have only two degrees of freedom, x1 is left to be determined). We need a transformation
f such that f(x1) = iπ, f(x2) = w2, f(x3) = 0, and f(x4) = w4. This mapping has the
derivative

df

dz
= A(z − x1)

0z−1(z − 1)0 =
A

z

so that f(z) = A log(z) +B.
In order to determine A, B and x1, we must use the conditions on the prevertices, which

yield A = 1, B = 0 and x1 = −1. Therefore the mapping we are looking for is given by
w = F (z) = log(z). Its inverse is therefore a conformal one to one transformation of the
infinite strip into the upper half plane. Let us combine it with a Moebius transformation
(see equation (??)) which maps z0 = F−1(w0) = ew0 into the center of the unit disk. We
have then determined a one to one conformal transformation of the infinite strip into the
unit disk which maps w0 into its center:

Fw0(w) = i

(
ew − ew0

ew − ew0

)
(7)

The prevertices of our polygon are x1 = −1, x2 = 0, x3 = 1 and x4 = ∞. Using equation
(??), we can compute

F (w2) = cos(π
2

+ 2y0) + i sin(π
2

+ 2y0)
F (w4) = i

Therefore the probability that the Brownian motion will exit the strip through the upper
edge is given by yo/π, independently of x0, as expected.
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3.2 Application of the Schwarz-Christoffel transformation to the
three players’ ruin problem

We are now going to investigate the following ruin problem: three gamblers with initial
assets a, b, c play a sequence of fair games, such that in each game one player receives one
unit from each of the other two players, until one of them is ruined. We are looking for the
probability that a particular player is ruined first (for an extensive study of different ruin
problems see for example Asmussen(2000)).

The total assets available throughout the game remains constant (a + b + c = Σ), so
we can view this as a random walk in the plane on the grid of integer coordinates of the
equilateral triangle X + Y + Z = Σ, X, Y, Z ≥ 0.

Letting the number of games tend to infinity, we model this as a Brownian motion in the
same plane, and are therefore looking for the probability that a Brownian motion starting
at (a, b, c) exits the triangle, say, along the edge z = 0. As one can see, this is exactly the
kind of probability problem to which the preceding sections provide an answer. For a look
at the discrete case of this problem and other related problems, see Bruss et al.(2003). The
idea for this model is due to Ferguson (see Ferguson(1995)). Our approach, however, is more
detailed.

3.3 Brownian motion on a triangle.

After a change in coordinates, this problem can clearly be transformed into the same problem
on the equilateral triangle of vertices ∆ := [−1 1 i

√
(3)] in the upper half complex plane

(H+). We can then use Lévy’s theorem to derive the following procedure:

1. Construct a conformal transformation Fp0 from the triangle to the unit disk which
maps the starting point p0 = (a, b, c) into the center of the disk.

2. Compute the images of each of the three summits of the triangle through this mapping.

3. Compute the desired probabilities. For example, the probability that the third player
is ruined first is given by the length of the image arc joining Fp0(−1) to Fp0(1), divided
by 2π.

First of all we choose a Schwarz-Christoffel transformation from the upper half plane
H+ into ∆, say F . This transformation being one to one, we can take its inverse to get a
mapping from ∆ into H+, which maps the starting point w0 into F−1(w0) := z0.

We can then use a Moebius transformation to map H+ into the unit disk, with z0 mapped
into the center of this disk. One such transformation would be:

Mz0(z) = i

(
z − z0

z − z0

)
.

The mapping Fp0 will be:
Fp0 = MF−1(w0) ◦ F−1. (8)
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If the exterior angles of a triangle < w1, w2, w3 > are denoted respectively by k1π, k2π, k3π
the general form of the Schwarz-Christoffel transformation from the upper half plane to the
triangle such that w1 = F (x1), w2 = F (x2), w3 = F (∞) is

w = A

∫ z

z0

(s− x1)
−k1(s− x2)

−k2ds+B, (9)

with A,B complex constants, and z0 6= x1, x2,∞ ∈ {Imz ≥ 0}. The integrals in (??)
do not represent elementary functions unless the triangle is degenerate. In the case which
is of interest to us, the triangle is equilateral (k1 = k2 = 2

3
). If we choose (arbitrarily)

x1 = −x2 = 1 and z0 = 1, the mapping then becomes:

w = F (z) = A

∫ z

1

(s− 1)−
2
3 (s+ 1)−

2
3ds+B. (10)

Depending on the values of A and B this maps the upper half plane onto the interior of any
equilateral triangle in the complex plane. In order to determine the values of A and B we
use the conditions: F (−1) = −1 and F (1) = 1. It will then follow that F (∞) = i

√
(3).

The first condition trivially implies B = 1.
Let us compute

∫ −1

1
(s2− 1)−

2
3ds = −

∫ 1

−1
(s2− 1)−

2
3ds. If we choose a path of integration

z = t along the real axis in the positive sense, by writing

s− 1 = |s− 1|eiφ

s+ 1 = |s+ 1|eiψ.

We see that the argument φ+ψ remains constant throughout integration from −1 to 1 since
s + 1 stays positive with zero argument, and s − 1 has constant argument π. Therefore
equation (??) yields

−A
∫ 1

−1

(s− 1)−2/3(s+ 1)−2/3ds− 1 = 1,

or, equivalently

−A(−e−2πi/3)

∫ 1

−1

(t2 − 1)−2/3dt = 2. (11)

After manipulation of the definition of the beta function

B(α, β) :=

∫ 1

0

tα−1(1− t)β−1dt,

one notices that the integral in (??) is the beta function evaluated for the parameters (1
2
, 1

3
),

which implies that

A =
2e2πi/3

B(1
2
, 1

3
)
.
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Finally, we have

1 =
B(1

2
, 1

3
)

B(1
2
, 1

3
)

=
2e2πi/3

β(1
2
, 1

3
)

∫ 1

0

(s2 − 1)−2/3ds.

We therefore obtain the following neat formula for a conformal transformation of the upper
half plane into the equilateral triangle with vertices ±1 and i

√
3,

w = F (z) =
2e2πi/3

B(1
2
, 1

3
)

∫ z

0

(s2 − 1)−2/3ds. (12)

It should be noted that the integration in (??) is that of a complex function over a path going
from 0 to z in the complex plane, which is not equivalent to the integration of a real-valued
function over the real line. Furthermore, the inversion of the function given in equation (??)
is in general not expressible in terms of elementary functions. As an example of a case in
which this inversion is possible manually, we choose the upper limit of the integrand to be
purely imaginary, z = iy. The mapping then becomes (see Ferguson(1995))

w = i
√

3B(1/2, 1/6,
y2

1 + y2
)B(1/2, 1/6)

where B(α, β) is as above and B(x, α, β) is the incomplete beta function

B(x, α, β) :=
1

B(α, β)

∫ x

0

tα−1(1− t)β−1dt.

It should be pointed out that there is no such simple formula for general z ∈ C.

3.4 Tools and computations

A toolbox for MATLAB is available (as free software distributed in ZIP archives) on the
internet, at the following address:

http://www.math.udel.edu/ driscoll/software/SC/.

This toolbox was designed by Driscoll (see Driscoll(1996)) as an extension of a FORTRAN
package developped by Trefethen (see Howell and Trefethen(1990)) in the early 1980’s. It
requires no programming by the user. Its user’s guide is very clearly written and makes it
relatively easy and efficient to use. Thanks to this we can conveniently compute various exit
probabilities.

Once the vertices of the polygon are entered, the program computes (for a chosen canon-
ical domain such as the upper half plane, the unit disk or others) the coordinates of the
prevertices and, when the canonical domain is chosen to be the unit disk, their arguments.
It also reports the image of the origin, known as the conformal center of the mapping. We
have a-priori no choice of this image, but, through a Moebius transformation, we can obtain
a new conformal transformation of the unit disk onto the polygon, with any interior point
as conformal center.
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We therefore obtain exactly the inverse of the desired mapping Fp0 . The arguments of the
prevertices are all the numerical data needed to compute the required probabilities. They
will be given by (θ1−θ−1)/2 where θp represents the argument of the prevertex of the summit
p.

(PUT FIGURE ?? AROUND HERE)

Figure ?? shows the image after the Schwarz-Christoffel transformation of the unit disk
with conformal center i

√
3/3 of ten evenly spaced circles centered at the origin, and ten

evenly spaced radii. All the intersections are orthogonal.
As an example, we choose

h= center(f, i*sqrt(3)/3),

i.e. the conformal center is at i
√

3/3. This means that all the players have the same
initial amount of money to begin with. We show a typical output of the toolbox, for the
computation of the mapping h above.

vertex alpha prevertex arg/pi

-----------------------------------------------------------------------

-1.00000 + 0.00000i 0.33333 -0.50000 + 0.86603i 0.6666666666

1.00000 + 0.00000i 0.33333 -0.50000 - 0.86603i 1.3333333333

0.00000 + 1.73205i 0.33333 1.00000 + 0.00000i 2.0000000000

As expected, the probability for the Brownian motion to exit the triangle by the lower
edge is exactly one third. We give a list of various probabilities, depending on the starting
point:

∆ a, b, c p

i
√

3/3 a = b = c 0.33333

i
√

3/5 a = b = 2c 0.5617

−1/8 + i5
√

3/8 a = Σ/8, b = Σ/4 0.0534

1/8 + 5
√

3/8 a = Σ/4, b = Σ/8 0.0534
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where a, b, c represent the assets of each player, ∆ the point in the complex plane associated
with this triplet, and p the probability that player 3 is ruined first.

The three player ruin problem with capital constraints

Another interesting problem is that of computing the probability of, say, player 3 being
ruined, while players 1 and 2 still have certain defined assets. With our preparation this is
now straightforward. It suffices to enter the triangle as a pentagon with four of its vertices
aligned. For example,

p = polygon([-1 -0.5 0.5 1 i*sqrt(3)])

describes the case in which we are looking for the probability of player 3 being ruined
first, while the other two players have assets ranging between (Σ

4
and 3Σ

4
), and (3Σ

4
and Σ

4
),

respectively. It is understood, of course, that the constraints imposed on the ranges of the
assets of the two remaining players at the instant of ruin are such that the sum of remaining
non-negative assets is again Σ.

We give below a list of various probabilities, depending on the starting point and the
constraints on the assets. In these examples we choose equal initial capital for all players,
which means that the Brownian motion starts at the center.

∆ constraints p

i
√

(3)/3 (−0.5, 0.5) 0.2589

i
√

(3)/3 (−1,−0.9) 1.8999.10−4

i
√

(3)/3 (−0.9,−0.1) 0.1284

i
√

(3)/3 (−0.1, 1) 0.2048

i
√

(3)/3 (−0.6, 0.8) 0.3197

It is clear that if one modifies the problem slightly so as to look for the probability of
exit through a union of disjoint intervals, the probability is the sum of the probabilities of
exit through each of the intervals.
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Figure 1: curve C in z-plane and image curve Γ in w-plane with respective unit tangent
vectors
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Figure 2: Prevertices and vertices of f
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Figure 3: Exterior angles
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Figure 4: the interior of the image polygon lies to the left of the border P
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Figure 5: The canonical domain is the upper half plane
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Figure 6: The canonical domain is the unit disk, with conformal center at i
√

(3)/3
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